On some forests determined by their Laplacian or signless Laplacian spectrum

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Graphs Determined by Their (signless) Laplacian Spectra

Let Wn = K1 ∨ Cn−1 be the wheel graph on n vertices, and let S(n, c, k) be the graph on n vertices obtained by attaching n− 2c− 2k − 1 pendant edges together with k hanging paths of length two at vertex v0, where v0 is the unique common vertex of c triangles. In this paper we show that S(n, c, k) (c > 1, k > 1) and Wn are determined by their signless Laplacian spectra, respectively. Moreover, w...

متن کامل

Graphs determined by their (signless) Laplacian spectra

Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.

متن کامل

Ela Graphs Determined by Their (signless) Laplacian Spectra

Let S(n, c) = K1∨(cK2∪(n−2c−1)K1), where n ≥ 2c+1 and c ≥ 0. In this paper, S(n, c) and its complement are shown to be determined by their Laplacian spectra, respectively. Moreover, we also prove that S(n, c) and its complement are determined by their signless Laplacian spectra, respectively.

متن کامل

A class of unicyclic graphs determined by their Laplacian spectrum

Let Gr,p be a graph obtained from a path by adjoining a cycle Cr of length r to one end and the central vertex of a star Sp on p vertices to the other end. In this paper, it is proven that unicyclic graph Gr,p with r even is determined by its Laplacian spectrum except for n = p+4.

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2009

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2009.04.005